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In some manufacturing processes, complex profiles are collected to characterize quality status. However, some of these
profiles may have unequal lengths, which makes the attempt of directly comparing them difficult. In addition, when a shift
occurs in a profile, it usually affects a segment of continuously connected observations. That is, local shifts instead of global
shifts are frequently seen. As shift signals are easily mixed with allowable mean trends, statistical monitoring of such
unaligned profiles becomes a challenging task. In this paper, we propose a framework for monitoring profiles with unequal
lengths. The profiles are first aligned using a modified robust dynamic time warping algorithm, which is insensitive to local
mean shifts. Penalization-based methods are then used to estimate profile means. Finally, mean estimates are utilized in a
likelihood ratio test statistic for effective monitoring. Both simulation studies and a real example are used to demonstrate
the effectiveness of the proposed monitoring procedure. Copyright © 2016 John Wiley & Sons, Ltd.
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1. Introduction

S
tatistical process control (SPC) has been widely used in many industrial processes. SPC aims to improve process and product
quality by reducing process variability. Control charts are one of the most important SPC tools for assignable cause identification
and variation reduction. In recent years, we have seen many processes having quality characterized by complicated profiles. A

profile defines a functional relationship between a response variable (Y) and one or more explanatory variables (Xs). Over the past
decades, as the use of sensing technology expands, profile monitoring has become more prevalent because of the large amounts
of data available in diverse manufacturing systems and service areas.

Much work has been performed when profiles can be characterized by parametric regression models. Such parametric models,
either linear or nonlinear, are then monitored by multivariate T2 control charts,1 self-starting control charts,2 multivariate
exponentially weighted moving average schemes,3 change point approaches,4,5 and so on. Abnormal shifts in profiles are expected
to lead to model changes and detected by such charts.

In certain applications, a profile cannot be well fitted by any parametric forms.6 In such cases, nonparametric monitoring methods
are developed. Chang and Yadama7 used B-spline approximations to monitor nonlinear profiles. The authors first applied a wavelet
transformation to separate true signals from noises, after which they formulated transformed profiles using a B-spline model; a T2

control chart was then used to identify profile mean shifts or shape changes. Shiau et al.8 and Paynabar et al.9 utilized principal
component analysis projection to monitor profiles, and De Ketelaere et al.10 gave a detailed overview of the principal component
analysis-based monitoring approaches. Jeong et al.11 used wavelet transformation to handle complicated profiles first before
monitoring.

Currently, most widely used parametric and nonparametric profile monitoring approaches share certain common assumptions.
First, all profiles to be monitored have an equal length, that is, vectors that characterize the profiles have an equal dimension. Second,
sampling points of the explanatory variable are fixed and consistent across all profiles. Although these assumptions are commonly
accepted in profile monitoring, they are violated in some manufacturing processes. In certain applications, profiles collected from
production cycles do not have an equal length but only share a common variation pattern, nor do the explanatory variables have
fixed sampling points.

This paper intends to develop algorithms for monitoring unaligned profiles with varying sampling points. The main contribution of
this paper is twofold. First, we propose a robust dynamic time warping (robust DTW) algorithm for profile alignment. The robust DTW
algorithm considers SPC-specific challenges, that is, profiles are contaminated by noises and shift signals but can still yield robust
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alignment results. Second, we propose a penalization-based charting algorithm that gives more effective performance in shift
detection.

The rest of this paper is organized as follows. In Section 2, we present an illustrative example to demonstrate the real needs and
importance of monitoring unaligned profiles. In Section 3, a framework for unaligned profile monitoring is presented. Then, the robust
DTW algorithm for profile alignment is presented in Section 4, and a new profile monitoring algorithm is introduced in Section 5. In
Section 6, a real example is shown to demonstrate the use of the monitoring procedure. Finally, we conclude this work with
suggestions for future research in Section 7.

2. An illustrative example

To better illustrate the importance of the profile alignment and monitoring problem, we take an ingot growth process as an example.
In an ingot growth process, a collection of procedures are carefully designed to convert polycrystalline silicon into monocrystalline
silicon. To maintain a constant ingot diameter and uniform material quality, the heating power must be perfectly coordinated to
ensure a desirable growth environment. Because of the complex growing mechanism, the heating power exhibits a dynamic trend
in each growth cycle. Figure 1(a) shows four sample power profiles collected from different growth cycles. All the profiles share a
similar trend, which is governed by the physical mechanism behind the growth process. In the initial pulling stage, the heating power
has a relatively large variation; the variation of heating power gradually stabilizes, while its mean increases slowly. Another noticeable
feature of the profiles is that they have different lengths. In practice, the length of a profile is determined by the amount of
polycrystalline silicon deposited for that production cycle. Figure 1(b) shows aligned heating power profiles. The lengths of all profiles
are unevenly stretched or compressed to the same span by an alignment algorithm that will be introduced in details in a later section.

In the ingot growth process, the difference in profile length is not an indication of process deterioration or failures. Instead,
abnormal process changes are likely led to shocks or segments of mean shifts in profiles. To detect such shifts, we have to shrink
or expand them to an equal length, with an equal number of sampling points. Profile alignment, also known as curve registration12

in biological and medical studies, is not yet widely studied in profile monitoring. Some existing discussions on profile alignment
focused on curves that are expressed in appropriate functional forms. For example, Mosesova et al.13 used simple landmark
registration to obtain aligned profiles for monitoring. Dai et al.14 studied the monitoring of unaligned discrete profiles, and they used
the conventional DTW algorithm to obtain warped profiles for monitoring. However, as the existing DTW algorithm is not designed for
SPC purpose, important failure signatures such as local shifts may mislead the alignment operation; SPC based on wrongly aligned
profiles can hardly give satisfactory performance.

3. A framework for unaligned profile monitoring

Assume the jth profile with length nj is collected at time j, which has observation pairs (xj, yj), where xj and yj are vectors of nj
dimensions that represent the explanatory and response variables, respectively. To facilitate discussion, we formulate the unaligned
profiles using the following regression model:

Figure 1. Heating power profiles collected from the ingot growth process are as follows: (a) raw profiles and (b) aligned profiles
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yij ¼ g f xij
� �� �þ εij; i ¼ 1; 2;⋯; nj; j ¼ 1; 2;⋯ (1)

where xij and yij denote the values of the ith element of xj and yj on the jth profile. Under the assumption of continuity of a profile,
x1j < x2j < ⋯ < xnj j. In most applications, xij are evenly distributed; while in some other cases, like power profiles in the ingot growth
process, the intervals of the explanatory variables are unequally distributed. Additionally, sampling positions of different profiles may
be different, which means that xij for profile j may not equal xil in profile l, l≠ j.

In the model, εij’s represent measurement errors, which are assumed to be independent and follow a normal distribution with
mean 0 and variance σ2j . g(�) is a general function that denotes the relationship between the explanatory variables and the response

variable. f(�) is a warping function that maps the explanatory variables of an unaligned profile to another scale so that the profiles
become aligned. We set profile 0, (x0, y0) with length n0, as the reference profile to which other profiles should be aligned. Then,
the warping function in Equation 1 is in fact f(xij) = xk0, k= 1, 2,⋯, n0. Aligning profile (xj, yj) to a reference profile means finding a series
of explanatory variable values in the reference profile and linking them with their counterparts in xj. Details on the warping function
will be introduced in the following sections.

To design a proper monitoring procedure for the regression model in Equation 1, profile alignment must first be accomplished by
estimating an appropriate warping function f(�). One of the popular methods that can be used to address the previous alignment
problem is DTW.14 However, DTW was originally proposed for general purposes. In the SPC scenario, a profile may be contaminated
by both noises and shift signals. The existing alignment algorithms are easily misled by such signals. Therefore, in this work, we
propose a robust DTW algorithm first, and then design improved methods to monitor aligned profiles.

A framework for unaligned profile monitoring is shown in Figure 2. In the first step, historical profiles that are assumed to be in
control but have different lengths and observational points are analyzed, and then a robust DTW algorithm is applied to find a
baseline profile. Next, other profiles are registered to the baseline so that the in-control mean and variance of the in-control process
can be estimated. The control limit is also estimated at this stage. In the second step, the designed chart is applied to online profiles.
When a new profile arrives, it is first aligned to the baseline profile, after which the mean vector of the aligned profile is estimated by
the proposed penalty methods. Finally, the estimated information is integrated with the control chart to detect potential shifts; a
decision about process status is then made.

4. Robust dynamic time warping for profile alignment

To monitor unaligned profiles, we need to align them so that an equal length and dimension are obtained. In this section, we first give
a brief review of the existing DTW algorithm for curve registration. Then, taking into account the presence of possible shifts in
unaligned profiles, we proposed a robust algorithm (robust DTW) for profile alignment. After that, a further discussion on parameter
design for robust DTW is presented.

4.1. A brief introduction of dynamic time warping

The warping function f in Equation 1 can be estimated using DTW. The DTW was first introduced for speech recognition, and it was
later widely used in fault diagnosis, pattern recognition, cassation, and so on.15–18 Ramaker et al.19 and Kassidas et al.20 applied DTW

Figure 2. A framework for unaligned profile monitoring
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for profile warping, but the authors assumed that the profiles have an identical length. Jeong et al.18 modified the traditional DTW and
proposed assigning weights to different points for time series classification. To solve the problem of monitoring dynamic profiles, Dai
et al.14 proposed using the DTWmethod. However, they did not discuss the robustness of the alignment operation when profiles have
local shifts.

In keeping the notations introduced earlier, let (xij, yij) be the ith sampling point on profile j. Assume there are two profiles, Qj and R,
where Qj is the jth profile to be aligned, {Qij= (xij, yij), i=1, 2,⋯, nj, j=1, 2,⋯}, and R is the reference curve that Qj will be aligned to,
{Rk0 = (xk0, yk0), k=1, 2,⋯, n0}. DTW aims to find the mapping path by minimizing the distance of these two sequences.

Let c= (c1, c2,⋯, cm,⋯, ch)
T be the alignment path, which is an index that stores the aligned point pairs from profiles Qj and R

separately, while h is the number of aligned pairs which is determined by the DTW algorithm automatically and max(nj, n0) ≤ h< nj
+ n0� 1. Specifically, c defines a mapping between profiles Qj and R, and each element of c is defined as cm= (Qij, Rk0) = ((xij, yij),
(xk0, yk0)), i ∈ {1, 2,⋯, nj}, k ∈ {1, 2,⋯, n0}, which represents that the mth aligned pair is composed of the ith sampling point on profile
Qj,Qij, and the kth sampling point on profile R,Rk0, and then the warping function for point Qij on profile Qj is f(xij) = xk0. Let d(cm)
= d(Qij, Rk0) = ||yij� yk0||p be a p-norm distance measure between the two aligned points Qij and Rk0; the distance of aligned points
is defined as the p-norm difference of corresponding response variables of profiles. In practice, the Euclidian distance (p=2) is most
widely used, and we also choose to use it in our work. At this point, the optimal mapping path of the two profile sequences for DTW
can be found by minimizing the sum of the distances of all alignment pairs:

D Qj; R
� � ¼ min

c
∑h

m¼1d cmð Þ:

To obtain better alignment results, the warping algorithm is often subject to certain constraints. Among other things, the boundary
conditions continuity and monotonicity are widely used.21 Dai et al.14 showed that the mean of unaligned profiles should be removed
before the DTW algorithm can be applied, as the DTW procedure is not invariant to location shifts in the profiles.

The optimal warping path can be efficiently found using dynamic programming. More specifically, let cumulative distance be the
total distance measured from the beginning of the profiles to current point pair (Qij, Rk0) as Dc(Qij, Rk0), and the distances of all
alignment pairs D(Qj, R) is equal to Dc Qnj j; Rn00

� �
. DTW computes Dc(Qij, Rk0) as the sum of points’ distance d(cm) and the minimum

of the cumulative distances of three adjacent pairs:

Dc Qij; Rk0
� � ¼ d Qij; Rk0

� �þ min Dc Q i�1ð Þj; Rk0
� �

;Dc Q i�1ð Þj; R k�1ð Þ0
� �

;Dc Qij; R k�1ð Þ0
� �� �

:

Following this recurrence, the optimal path c is found by backtracking the recurring optimal nodes starting from final point pair
Qnj j; Rn00
� �

.

4.2. Robust dynamic time warping for profile alignment

DTW is an effective algorithm that can solve the alignment problem of profiles with unequal lengths or uncertain sampling intervals.
However, from the algorithm, we learn that points on the query profile are aligned to points on the reference profile one by one. That
is, only a single point is considered at each iteration. If there is significant noise on any single point, the complete mapping path will
be affected. However, in SPC monitoring, it is very likely that profiles are contaminated by noise signals or a segment of shift.
Although we expect that two profiles should be aligned based on their overall trend patterns, such shift signals or noises inevitably
affect the alignment operations locally. Figure 3 shows two profiles that have similar trends apart from a hump (a local shift signal) in
one of them. If the traditional DTW algorithm is applied, as shown in Figure 3(a), the points near the shifted points are mapped
incorrectly. Figure 3(b) shows the correct way to map these two profiles. It’s also the case for profiles have noises on each point.

To overcome the shortage of the existing DTW algorithm, we here propose a robust DTW algorithm. This algorithm works on a
segment-by-segment basis. At each step, profile segments instead of single points from two profiles are compared and mapped. Even
if one profile is contaminated by noises or shift signals at a single or even multiple points, the alignment of the two profile segments is
less affected since the distances of a lot more points are considered each time.

More specifically, to find the mth alignment pair, we need to evaluate distance between the ith point on Q and the kth point on R.
A robust evaluation of the distance is defined as follows:

dw Qij; Rk0
� �

m ¼ 1

∑lsl
∑l sl y iþlð Þj � y kþlð Þ0

��� ���
p

� �
; � ∞ < l < þ∞; 1≤i þ l≤nj; 1≤k þ l≤n0; (2)

where sl is a weighting function that weights the center the most. Here, a density function of a normal distribution with mean 0 and
variance ς is chosen to describe wl, that is, sl=φz(l), z∼N(0, ς

2); and ς determines the effective length of the profile segments. Because
the total distance is evaluated as the weighted sum of distances of all adjacent pairs, the impact of any single or multiple points is less
profound. If ς =0, it means that we only consider the center point, and thus, the robust DTW reduces to the traditional DTW; the
algorithm evaluates distances on a point basis again. When ς> 0, we expect that the robust DTW is less sensitive to local shifts
and noises in profiles than the traditional DTW, thus can generate more reliable alignment results for process monitoring.

It should be noted that even if the profile to be aligned is only noisy but has no shifts, the robust DTW still works effectively.
Figure 4 shows the alignment of two noisy profiles (profiles contaminated by noises). If the traditional DTW algorithm is applied,
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as shown in Figure 4(a), some points are mapped incorrectly, while Figure 4(b) shows that robust DTW provides better alignment
performances as it is less sensitive to noise signals.

4.3. Parameter selection for the robust DTW

In robust DTW, the form of the weighting function is taken as the density function of a normal distribution. Therefore, one important
parameter here is ς, as it determines the spread of the weighing function, thus determines the effective length of segments in
distance calculation.

We here use numerical simulations to study the impact of these parameters. To make the study comprehensive, we choose ς from
a wide range of candidates Θ= {0.1, 0.2,⋯, 1, 2,⋯, 10}. As previously mentioned, the ingot growth profiles that need to be aligned
have certain common trends. To mimic the real profiles seen in the ingot growth process, we assume that each simulated profile

Figure 4. Dynamic time warping (DTW) alignment for profiles with noises are as follows: (a) alignment using the traditional DTW and (b) alignment using the robust DTW.
Dotted: reference profile; solid: query profile

Figure 3. Dynamic time warping (DTW) alignment for curves with a local shift signal are as follows: (a) alignment using the traditional DTW and (b) alignment using the
robust DTW. Dotted: reference profile; solid: query profile
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has three stages: increasing, decreasing, and increasing again. The first two stages are represented by a cycle of a sinusoidal function,
and the third stage is formulated by a linear function. That is, the simulated profile is governed by the following function:

yij ¼
k þ a sin xij=ω

� �þ εij; 0 < xij < 2πω;

y2πω þ b xij � 2πω
� �þ εij 2πω < xij < 2πωþ 30=b

(
i ¼ 1; 2;⋯; nj; j ¼ 1; 2;

where εij∼ 0; σ2j
	 


. Under this assumption, the profiles have similar patterns but can be stretched or compressed by changing the

parameters.
To investigate the effect of ς, we set k= 2, a=5,ω= 5, b= 1, with σj=0.2 for the query profile and σ0 = 0 for the reference

profile R. Five types of failure signals are added to the query profile, each of which corresponds to a particular type of shift or
failure in the process. Figure 5(a) shows a profile without any shifts. The five added shift signals are as follows: (i) a sudden
transient shift; the shift magnitude is set to Δyij= 1, 5, 11 at shift point xij= 120 in the third stage, as Figure 5(b) shows; (ii)
sustained constant shifts with shift values Δyij= 1, 2, 3 after xij= 120 in the third stage, as shown in Figure 5(c); (iii) sustained drifts
with Δyij= k(xij� 120), k= 0.1, 0.5, 1.0 after xij= 120 in the third stage, as shown in Figure 5(d); (iv) constant cyclical shifts with
Δyij= r sin((xij� 120)πωμ/2), r=0.5, 1.0, 2.0, ωμ= 1 after xij= 120 in the third stage, as shown in Figure 5(e); and (v) enlarged cyclical

shifts with Δyij ¼ e�s xij�120ð Þπωμ=20ð Þ sin xij � 120
� �

πωμ=20
� �

, s= 0.1, 0.2, 0.3, ωμ= 1, as shown in Figure 5(f).

To facilitate the evaluation of alignment performance, the number of explanatory variables for both query profile Q and
reference profile R are equal. That is, nj= n0 holds for all profiles. f(xij) represents the aligned indices of query Q, while xi0
represents the aligned indices of reference R. Thus, the correct estimation of the warping function is f(xij) = xi0 for every i and
j. Keogh and Pazzani22 used a misalignment index (MI) for performance evaluation by counting the differences between the
correct alignment and the alignment generated by an algorithm. The MI is defined as the ratio of a measure of misalignment
to a measure of profile length, as follows:

MI ¼ ∑i f xij
� �� xi0

�� ��
1
2 n0 n0 � 1ð Þ ; j ¼ 1; 2;

where the role of the denominator is to adapt for different profile lengths.
Clearly, the value of MI is small if there is a perfect alignment achieved. Figure 6 shows the MI values for the six profiles defined

previously when ς varies. MI is the largest when ς = 0 (robust DTW reduces to the traditional DTW). When ς increases, MI decreases
slowly first, then sharply, and finally stabilizes at a certain level. Therefore, for this process, a feasible selection for ς is within (5, 9).

Once the robust DTW method is developed, following the framework in Figure 2, we can align historical profiles to an equal length,
then get a baseline profile for online comparison. The iterative procedure suggested by Dai et al.14 could be borrowed for baseline
calculation, expect that the robust distance measure proposed previously should be used.

Figure 5. Profiles used for robust dynamic time warping alignment are as follows: (a) no shift, (b) sudden transient shifts, (c) sustained constant shifts, (d) sustained drift, (e)
constant cyclical shifts, and (f) gradually enlarged cyclical shifts
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5. Profile monitoring based on penalized estimation

In process monitoring, observed samples are always contaminated by noises. If the true values of a process were known, a more
efficient control chart could be designed. Similarly, in aligned profile monitoring, observed profile readings are contaminated by
noises from various sources. If the true position of a profile could be obtained, such information could be utilized by a control chart
to help improving its charting performance. In this section, we first introduce a generalized likelihood ratio test (GLRT) statistic for shift
detection, then deviate a little bit and study how to estimate shift signals that is critical to the GLRT statistic. Finally, we come back to
the GLRT statistic, and show the complete charting statistic with penalized estimates of shift signals.

5.1. A generalized likelihood ratio test statistic for shift detection in profiles

A profile can be represented by a high-dimensional vector, with each point being one element of the vector. Let the mean of the

baseline profile be μ0 ¼ μ10;μ20; ;μn00

� �T
and the covariance matrix be Σ0, where n0 represents the dimension of the vector. In online

monitoring, the mean and covariance of in-control profiles are assumed to be known. Let profiles collected at time j after alignment

be y’j ¼ y ’1j; y
’
2j;⋯; y ’n0 j

	 
T
; j ¼ 1; 2;⋯. Here, we assume that each element of y ’j follows a normal distribution with a dynamic and

unknown mean, y’j∼MNn0 μj;Σ0

	 

.

To check whether a profile is different from the baseline, we start by examining the following statistical hypothesis:
H0μj=μ0 vs. H1 :μj≠μ0. Then, the logarithmic GLRT statistic is

Λ y’j

	 

¼ y’j � μ0

	 
T
Σ�1
0 y’j � μ0

	 

� y’j � μ

j

	 
T
Σ�1
0 y’j � μ

j

	 

; (3)

where μ
j is an estimated process mean of μj for the alternative hypothesis. That is,

μ
j ¼ argmin

μj≠μ0

y’j � μj

	 
T
Σ
�1

0
y’j � μj

	 
� �
: (4)

The null hypothesis is rejected, and the alternative hypothesis is favored if Λ y’j

	 

> c1, where c1 is a threshold value.

In Equation 3, one critical step is to estimate the profile mean μj based on the profile data y’j collected at time j. For the traditional

GLRT, the default estimates are μ
j ¼ y’j , and thus, Λ y’j

	 

¼ y’j � μ0

	 
T
Σ�1
0 y’j � μ0

	 

. The corresponding charting statistic reduces to

the traditional Hotelling’s T2 control chart.
However, as y’j contains both useful and noise signals, μ j ¼ y’j is obviously an inaccurate estimate. In the next section, we investigate

different methods for profile mean estimation. For the simplifying of expressions, we assume μ0 = 0. That is, the process mean is
assumed to be zero when the process is in control. Although the following derivations are presented under this assumption, it is
not difficult to extend the results to processes with a general in-control mean vector.

Figure 6. Misalignment index for different . ς. chosen for various profile shift patterns
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5.2. Methods for profile mean estimation

Fan23 proposed a local linear regression (LLR) method for eliminating noise information with a kernel function. Zou et al.24 applied this
nonparametric regression approach to estimate the profile mean estimation μ

j, μ j ¼ Wy’j, in whichW is a n0 × n0 smoothing matrix. The

LLR method estimates μ with a linear regression using a point’s neighbors. Therefore, the resulting estimates are relatively smooth
compared with the raw readings.

Tibshirani et al.25 proposed a fused LASSO (FLASSO) algorithm for regression estimation. The FLASSO has two penalty terms: the
LASSO penalty and the fusion penalty. The LASSO penalty has the same effect as the traditional LASSO, which shrinks some elements
to zero; the fusion penalty has the effect of forcing adjacent coefficients to be equal, thereby forming a spatially smoothing solution.
The joint use of the FLASSO penalties helps generate smoothed solutions with sparsity, which is exactly the local shift feature we
expect to see in profile mean estimation. Therefore, we introduce the use of FLASSO in profile mean estimation as follows:

μ
j ¼ argmin

μj

y’j � μj

	 
T
Σ�10 y’j � μj

	 

þ λ1∑

n0
i¼1 μij

�� ��þ λ2∑
n0
i¼2 μij � μ i�1ð Þj

��� ���� �
; (5)

where λ1 and λ2 are penalty coefficients, and |μij�μ(i� 1)j| is the absolute value of the difference between the ith element and its
neighboring element to the left on the profile. The first constraint λ1∑

n0
i¼1 μij

�� �� encourages sparsity in the coefficients, helps generate

sparsity in mean estimates by setting small elements to exactly zero when the in-control mean vector is assumed to be 0. Existing

works have been seen using the LASSO penalty for mean estimation 26,27; the second constraint λ2∑
n0
i¼2 μij � μ i�1ð Þj

��� ��� encourages

sparsity in their differences (i.e., flatness of profile mean), and this fused estimate (FE) can also be used for mean estimation. Overall,
the mean estimate obtained by Equation 5 is expected to preserve useful shift information in a profile, while removing noise that may
harm charting performance. The equation can be solved by a coordinate-wise optimization algorithm28, a dynamic programming
algorithm29, or an efficient fused LASSO algorithm30.

The aforementioned mean estimation methods, LLR, LASSO, FLASSO, and FE emphasize different aspects of the solution, giving
different results. LLR pursues a smoothing profile using weighted neighbors in a kernel function. LASSO shrinks solutions to zero to
generate sparsity without any structures. FE attempts to obtain a smoothed profile estimate but is still contaminated by noise. FLASSO
achieves sparsity in elements and their differences but has the risk of being misled by noise. Figure 7 shows the estimations of the four
algorithms. In Figure 7, the dots represent the simulated data of y’j, which are the same in these four algorithms. All of the true profile

mean represented by dashed line has a same jump at the 120th point, while the estimated means shown in solid lines are apparently
different from each other. LLR gives a smoothed estimate that is different from the true value atmost points. LASSO gives a solution that has
many zeros, but occasional spikes indicate that this method is easily affected by a large amount of noise. FLASSO gives a sparse estimate,
but a bias exists for most of the points. Finally, FE gives a smoothed and sparse estimate, but the shifted signal is not captured well.

To tackle the drawback of the aforementioned algorithms, we incorporate the smoothing capability of LLR and the selection power
of FLASSO and propose a new way to retrieve mean estimates. The proposed method adds the fused LASSO penalty into the LLR
solution, denoted as FLASSO–LLR, which is given by

μ
j ¼ argmin

μj
Wy’j � μj

	 
T
Σ�1
0 Wy’j � μj

	 
�
þλ1∑

n0
i¼1 μij

�� ��þ λ2∑
n0
i¼2 μij � μ i�1ð Þj

��� ���o ;

(6)

whereW is a kernel smoothing function; its bandwidth is given by hE ¼ 2� 1=n0∑
n0
i¼1 xij � xj

� �2	 
1=2
n�1=50 , which is a popular choice in

the literature 24,31,32. In Equation 6, the penalty is applied based on LLR-smoothed observations. Compared with Equation 5, each
smoothed observation in Equation 6 is calculated from a set of neighbors. Therefore, we expected that the estimates obtained from
Equation 6 is less sensitive to noises, and thus facilitates more effective monitoring of process changes. If only the fusion penalty is
used recently, we name this method FE–LLR.

Figure 8 shows the performances of FLASSO–LLR and FE–LLR when applied to the simulated profile shown in Figure 7.
Comparatively, FLASSO–LLR gives an estimate that is close to the true mean, while FE–LLR gives a smoother estimate than LLR.

5.3. Profile monitoring based on penalized estimates

The mean profiles obtained by solving Equation 5 give estimates of true process status. In this section, we propose a charting scheme
based on the estimates and use this information to boost charting performance.

Once a mean estimate, μ j , is obtained by either one of the estimation methods, the process can be monitored by plugging the
estimate into Equation 3, which becomes

Λ y’j

	 

¼ 2y’Tj Σ

�1
0

μ
j � μ0

� �þ μT
0Σ

�1
0 μ0 � μT

j Σ
�1
0

μ
j:

Then, an equally effective control chart based on penalized likelihood ratio is achieved:
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Λ y’j

	 

¼ 2y’Tj Σ

�1
0

μ
j � μ0

� �� μT
j Σ

�1
0

μ
j > c2; (7)

where c2 is a proper control limit determined by a predefined false alarm rate.

Figure 8. Profile mean estimation by different methods are as follows: (a) FLASSO–LLR and (b) FE–LLR

Figure 7. Profile mean estimation using different methods: (a) LLR, (b) LASSO, (c) FLASSO, and (d) FE
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Before the monitoring procedure can be used, the panelized parameters λ1 and λ2 should be properly chosen as they determine
the sparsity and smoothness of the estimated profile mean, respectively. We follow the method used by Zou et al.27 and Wang et al.33,
in which a sequence of turning points of penalty parameters are used to obtain estimates, and a normalized statistic is used for
monitoring. Following this idea, we set Γp= {λ1i, i= 1, 2,⋯, p} and Γq= {λ2k, k= 1, 2,, q} be a set of candidates for λ1 and λ2, where p
and q are two pre-specified constants. Thus, we define the charting statistic as follows:

eT ¼ max i ¼ 1;⋯; p

k ¼ 1;⋯; q

Λ λ1i ;λ2kð Þ y’j

	 

� E Λ λ1i ;λ2kð Þ y’j

	 
	 

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
Var Λ λ1i ;λ2kð Þ y’j

	 
	 
r
;

(8)

where E Λ λ1i ;λ2kð Þ y’j

	 
	 

and Var Λ λ1i ;λ2kð Þ y’j

	 
	 

are the mean and variance, respectively, of statisticΛ λ1i ;λ2kð Þ y’j

	 

for a specific choice of

(λ1, λ2), which are approximated via situation using the empirical expectation and variance of Λ λ1i ;λ2kð Þ y’j

	 

by setting y’j follows

multivariate normal distribution with μ0 = 0 and Σ0 ¼ In0 . Similarly, profile means estimated by Equation 5 for FLASSO or Equation 6

for FLASSO–LLR could be used. This control chart triggers a signal when eT > L, where L is a properly chosen control limit. Similarly,
for the FE chart and also the FE–LLR chart, the charting statistics and control limits can be designed and determined accordingly.

5.4. Charting performance comparison

We now use simulations to study the performance of different charts discussed previously. We assume all of the aligned profiles have
a length of 160, n0 = 160. Without loss of generality, we assume that all in-control aligned profiles follow the standard normal

distribution, y ’0∼MNn0 μ0; Ið Þ, where μ0 ¼ μ10;μ20;⋯;μn00

� �T
. In Phase II online monitoring, the aligned profile y ’j follows a multivariate

normal distribution with the same covariance structure but an unknown mean μj ¼ μ1j;μ2j;⋯μij;⋯μn0 j

	 
T
, y’j∼MNn0 μj; I

	 

.

Following the framework in Figure 2, we first generate historical profiles and obtain a baseline. Next, all profiles to be monitored
are standardized with respect to the baseline by calculating

y’ ’ij ¼ y ’ij � μi0

	 

=σi0; i ¼ 1; 2;⋯; n0; j ¼ 1; 2;⋯

When the process is in control, the standardized profile, y’ ’j ¼ y ’ ’1j; y
’ ’
2j;⋯; y ’ ’n0 j

	 
T
, follows the standard normal distribution,

y’ ’j ∼MNn0 0; Ið Þ. If the process is out-of-control, then y ’ ’j follows the shifted normal distribution, y’ ’j ∼MNn0 μj � μ0; I
	 


, and the profile

mean shift is μj�μ0.
To mimic different shift scenarios, we consider three types of shifts for the profile mean that are frequently seen in the ingot

growth process: a sustained shift, a sustained drift, and a cyclical shift (marked as (c)–(f) in Figure 5). As we have mentioned earlier,
if a shift occurs in a profile, it is likely to affect segment of the profile mean vector. Hence, we assume an abnormal profile shift only
occurs starting from step τμ. Some shift types also have varying parameter settings, thus creating six shift patterns, OC1–OC6, as
shown in Table I. For the sustained shift, we consider different shift sizes δμ s (OC1) and different shift positions τμ s (OC2); for the
sustained drift (OC3), the shift occurs at a fixed position but with different gradients kμ s; and for the cyclical shift, we consider shifts
with different sizes rμ s (OC4) and frequencies ωμ s (OC5), but the shift amplitude rμ remains a constant. In practice, a cyclical shift may
be amplified because of built-in feedback control mechanisms. We also observe the case where a cyclical shift’s amplitude increases
within the product cycle, which is described by an exponential function with parameter sμ (OC6). The six out-of-control patterns are
added to simulated profiles, and the resulting profiles are monitored by different charts.

Table I. Types of failures for profile mean

Shift pattern Mean shift Fixed parameters Shift element

OC1 μij→μij+ δμ, i> τμ τμ=120 δμ
OC2 μij→μij+ δμ, i> τμ δμ=0.5 τμ
OC3 μij→μij+ kμ(i� τμ)/(n0� τμ), i> τμ τμ=120 kμ
OC4 μij→μij+ rμ sin[(i� τμ)πωμ/40], i> τμ τμ=80 ; ωμ= 2 rμ
OC5 μij→μij+ rμ sin[(i� τμ)πωμ/40], i> τμ rμ= 0.7 ; τμ= 80 ωμ

OC6
μij→μij þ rμe

sμ i�τμð Þ sin i � τμ
� �

πωμ=40
 �

;

i > τμ

rμ ¼ 0:15 ; τμ ¼ 80 ;

ωμ ¼ 2

sμ
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The sparsity penalty λ1 and the fusion penalty λ2 are adaptively chosen to maximize the charting statistic. Based on our experience
and values of the simulated data, we define the parameter spaces Φ1,Φ2 for the penalty parameters in Table II. As FLASSO–LLR and
FE–LLR are the penalization-based methods based on smoothing, the smoothing estimation has decreased processes’ noises, which
leads to the penalty parameters for FLASSO–LLR and FE–LLR much smaller than the methods without smoothing step when
estimating the true process mean.

For comparison, we choose the nonparametric regression method based on LLR proposed by Gijbels34 as a benchmark. Average run
length (ARL) is widely used in the literature for charting performance comparison. In the following example, the in-control ARLs of all control
charts are set to 200, and the corresponding out-of-control ARLs are calculated and compared. Each ARL is obtained using 10,000 replicates.

5.5. Average run length comparison

Table III shows the ARL performance of all competing charts under different types of failure patterns. For each shift scenario, the
smallest ARL is shown in bold. A number of observations can be made from examining the results, as follows:

1 A general comparison between LLR and other penalization-based chart reveals that at least one penalization-based chart
outperforms LLR for all of the shift patterns we considered (OC1–OC6). This shows that adding a penalty to the GLR statistic
or LLR-based GLR statistic is effective in identifying shifts in a profile.

2 As the shift value increases, ARL decreases except for shift scenarios OC2 and OC5. For OC2, the increase in ARL as the shift
element τμ increases can be explained by the shift dimension of process means. As the shift position τμ increases, one observes
shorter shift duration in the mean vector, which leads to a lower probability of a false signal when the data are abnormal.
Similarly, ωμ controls the frequency of a cyclical signal inflating the in control (IC) profile mean for OC5. A larger ωμ means that
there are more periods in the cyclical shift adding to the IC profile mean vector, which obtained severe changes between adjacent
mean’s elements. The drastic undulation might lose accuracy of profile mean estimation, which makes ARL grow with ωμ.

3 When there is a sustained mean shift (OC1 and OC2) or a sustained drift (OC3), FLASSO–LLR performs the best in most cases, and
FE–LLR performs quite closely to FLASSO–LLR. FLASSO and FE are relative slow in these cases, with FE showing a slightly better
performance. This shows that applying penalization to the smoothed profile obtained from LLR is more likely to extract these
shift patterns; the LLR smoothing is effective in removing noises and making the sustained mean shift or drift stands out.

4 When a cyclical shift with constant amplitude (OC4 and OC5) or increasing amplitude (OC6) occurs, FE performs the best, and it
has obvious superiority in all of these cases because of its efficient detection of shifts. Simulation results also suggest that FE
control chart is quite robust even when amplitude or frequency of cyclical shift is unspecified. Performance of FLASSO differs
with the values of shifts. FLASSO performs closely to FE with large value of cyclical shift, while the LLR-based method has no
obvious superiority in most cases. When a process with a large cyclical shift is being monitored, applying LLR to profiles has
the effect of smoothing both noise and signals, thus weakening the real cyclical signal. Therefore, in these cases, FE and FLASSO
perform better. When the process undergoes a cyclical shift with a small value, FLASSO and LLR have no competitive power
compared with FE. This is because the cyclical information is more important when the shift amplitude is small; the effects of
FLASSO and LLR in removing noise are less prominent in such cases.

In summary, most penalization-based charts perform better than the LLR chart. This shows that the suggested penalization is
effective in removing noise and screening out useful shift signals for monitoring. Among the penalized charts, the FLASSO–LLR chart
best suits the cases with mean shift or drift (or cyclical shifts with relatively large amplitude), while FE best suits the cases in which
cyclical features dominate.

6. A real example

In this section, we apply the proposed framework for unaligned profile monitoring to the ingot growth process and monitor heating
power profiles. A heating power profile is formed by retrieving the power reading with a fixed time interval within a long production
cycle. Several samples of these profiles are shown in Figure 1.

To build a baseline, 20 historical profiles with different time spans that are judged by engineers as in control are aligned using
robust DTW first; the baseline profile is then computed after the reference profile is determined and all other profiles are aligned
to the reference. The parameter spaces Φ1,Φ2 for the penalization-based charts are set according to Table II. The upper control limits
of the charts are calculated by setting the false alarm rate to 0.005.

Table II. Parameter spaces for penalty coefficients

Φ1 Φ2 p q

FLASSO {0.2, 0.4, 0.6,⋯, 2.0} {0.5, 1.0, 1.5,⋯, 5.0} 10 10
FLASSO-LLR {0.02, 0.04, 0.06,⋯, 0.20} {0.05, 0.10, 0.15,⋯, 0.50} 10 10
FE — {0.1, 0.4, 0.7,⋯, 5.8} — 20
FE-LLR — {0.01, 0.04, 0.07,⋯, 0.58} — 20
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Table III. Average run lengths comparison

Shift
patterns

Shift
values LLR

Control charts based on penalized likelihood
ratio

FLASSO FE
FLASSO–

LLR
FE–
LLR

— 200 200 201 199 200

OC1 0.1 128 165 142 125 131
0.2 50.7 90.4 61.4 48.1 51.8
0.3 18.6 34.6 22.6 16.8 18.4
0.4 7.54 12.6 8.59 6.58 7.21
0.5 3.51 5.23 3.93 3.11 3.48
0.6 2.06 2.55 2.19 1.88 2.00
0.7 1.42 1.61 1.47 1.33 1.41
0.8 1.16 1.22 1.18 1.11 1.15
0.9 1.05 1.07 1.05 1.03 1.04
1.0 1.01 1.02 1.01 1.01 1.01

OC2 10 1.01 1.28 1.03 1.02 1.01
20 1.02 1.35 1.04 1.02 1.02
30 1.04 1.42 1.06 1.04 1.03
40 1.06 1.52 1.09 1.05 1.05
50 1.10 1.62 1.14 1.08 1.08
60 1.14 1.78 1.20 1.13 1.14
70 1.23 1.94 1.30 1.20 1.22
80 1.35 2.18 1.45 1.31 1.33
90 1.55 2.54 1.69 1.46 1.52

100 1.88 3.00 2.06 1.75 1.81
110 2.46 3.87 2.72 2.23 2.38
120 3.60 5.09 3.92 3.14 3.50
130 5.95 7.72 6.63 5.13 5.85
140 12.4 13.0 14.2 9.07 11.7
150 38.4 29.9 47.0 25.3 37.0

OC3 0.1 168 182 178 161 168
0.2 110 130 121 94.6 106
0.3 61.0 77.4 71.0 50.5 58.9
0.4 32.7 42.3 39.3 25.3 32.3
0.5 18.0 21.9 21.7 13.3 16.9
0.6 9.84 12.0 12.1 7.43 9.59
0.7 6.10 6.78 6.97 4.56 5.68
0.8 3.87 4.21 4.50 3.05 3.76
0.9 2.64 2.82 3.02 2.17 2.59
1.0 1.98 2.05 2.18 1.67 1.94
1.1 1.54 1.61 1.67 1.38 1.51
1.2 1.33 1.33 1.39 1.21 1.31
1.3 1.17 1.18 1.22 1.10 1.16
1.4 1.09 1.09 1.11 1.05 1.08
1.5 1.04 1.04 1.06 1.02 1.04

OC4 0.1 178 185 25.9 181 181
0.2 125 147 18.0 133 130
0.3 78.8 101 10.9 86.0 81.0
0.4 44.2 58.8 6.13 51.2 45.9
0.5 23.6 31.1 3.56 30.2 24.8
0.6 12.8 16.0 2.20 17.6 13.7
0.7 6.98 8.37 1.58 10.2 7.59
0.8 4.20 4.53 1.24 6.25 4.49
0.9 2.74 2.68 1.09 3.96 2.89
1.0 1.93 1.79 1.03 2.69 1.99
1.1 1.47 1.36 1.01 1.92 1.53
1.2 1.23 1.14 1.00 1.48 1.26

(Continues)
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Table III. Continued.

Shift
patterns

Shift
values LLR

Control charts based on penalized likelihood
ratio

FLASSO FE
FLASSO–

LLR
FE–
LLR

— 200 200 201 199 200

1.3 1.10 1.05 1.00 1.25 1.12
1.4 1.04 1.01 1.00 1.12 1.05
1.5 1.01 1.00 1.00 1.05 1.02

OC5 0.5 1.36 2.12 1.19 1.34 1.34
1.0 1.49 3.42 1.23 1.72 1.51
1.5 2.13 5.62 1.39 3.06 2.23
2.0 7.18 8.42 1.57 10.2 7.50
2.5 40.1 11.5 1.76 22.2 31.8
3.0 99.5 15.2 1.99 34.6 64.1
3.5 106 18.7 2.21 47.9 76.2
4.0 84.8 23.2 2.45 61.4 76.9
4.5 75.7 27.9 2.67 73.2 78.6
5.0 86.0 32.1 2.92 85.2 90.0
5.5 115 35.7 3.16 99.4 115

OC6 0.02 142 159 20.7 141 143
0.04 124 142 18.3 125 123
0.06 103 120 15.5 98.4 99.4
0.08 75.7 90.7 12.3 71.7 74.3
0.10 52.9 59.5 9.18 47.1 51.7
0.12 31.2 33.8 6.46 27.5 30.5
0.14 16.8 15.9 4.10 14.4 16.5
0.16 8.20 6.91 2.53 6.88 7.83
0.18 3.80 3.10 1.62 3.31 3.60
0.20 1.87 1.58 1.18 1.72 1.81
0.22 1.20 1.09 1.02 1.15 1.18
0.24 1.01 1.00 1.00 1.01 1.01

Figure 9. Phase II control charts for 20 profiles are as follows: (a) FLASSO, (b) FE, (c) FLASSO–LLR, and FE–LLR, and (d) LLR
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We then pick another 20 profiles for online monitoring. All profiles are aligned to the baseline using robust DTW. These aligned
profiles are plotted in FLASSO, FE, FLASSO–LLR, FE–LLR, and LLR charts. As our results have shown that FLASSO–LLR and FE–LLR have
exactly the same alarm signals for all profiles, we here use one figure to represent both charts to save space. The running states of the
charts are shown in Figure 9.

Figure 10. Details of profile 8 are the following: (a) profile curve and (b) profile alignment by robust dynamic time warping

Figure 11. Mean estimation of aligned profile 8 by different methods are the following: (a) FLASSO, (b) FE, (c) FLASSO–LLR and FELLR, and (d) LLR
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As seen in Figure 9, these five control charts give similar monitoring signals for most of the profiles. All charts indicate that samples
1, 4–7, 9–17, and 20 are in-control, while sample 19 is out-of-control. However, profiles 2, 3, 8, and 18 are judged differently. For
example, FLASSO and FE report that profile 8 is abnormal, while the other three charts related to LLR report the opposite situation.
For demonstration purposes, Figure 10(a) compares the profile with the baseline, and Figure 10(b) shows the alignment of the profile
to the baseline. The mean estimates provided by all tested methods are shown in Figure 11. Profile 8 appears to fluctuate strongly
starting at step 250; cyclical shifts are observed from that point on. When applying different methods to estimate the profile mean,
the cyclical signals are best preserved by FE, as shown in Figure 11(b). FLASSO in Figure 11(a) also preserves certain shift signals.
However, LLR makes the signal smooth by removing both noise and useful cyclical shift signals, and the penalization after LLR cannot
further recover the cyclical shift information. Therefore, in this case, FE and FLSSO perform better. This result is consistent with the
extensive study described in the previous section.

7. Conclusions and further research

This article provides a framework for monitoring unaligned profiles based on robust DTW and penalized likelihood estimation. In the
proposed procedure, a baseline profile is first calculated from aligned in-control profiles. Then, a new profile to be monitored is
aligned to this baseline, and the true mean of the aligned profile is estimated using several penalization-based methods.

Once the profile alignment based on robust DTW has been completed, control charts are then derived from the likelihood-ratio
test by taking the estimated mean into consideration. We compare the proposed penalization-based charts with a traditional
nonparametric regression chart via extensive simulation studies and a real example. The results show that penalization-based charts
generally have superior performance. More specifically, the FLASSO-LLR chart performs the best in most traditional cases. FE chart is
the best in cyclical situation, which is commonly encountered in feedback systems, and its performance is not much worse than
FLASSO–LLR in other cases.

It is worth noting that the penalization-based charts have an additional merit. Whenever an out-of-control signal is triggered, the
estimated mean provides direct clues for diagnosis. Thus, the use of such penalized charts is especially appealing in such applications.
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